ST. LOUIS PUBLIC SCHOOLS

Language Companion to the DESE Math Model Curriculum, Grade 2

Developed as part of Saint Louis Public Schools
"Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Grade 5- Multiply and Divide Multi-Digit Numbers

Essential Measurable Learning Objective	Language Objectives	Sentence Frames
Students will apply the strategy used to compute a given multiplication problem.	Students will explain the strategy orally using logical connectors (and, that, so). Students will explain in writing a multiplication problem as groups of an amount, using -ing endings as a noun \& verb ending.	I made __ groups of \qquad \qquad that equal \qquad Example: I made 6 groups of 5 counters that equal 30. Multiplying \qquad x \qquad $=$ \qquad means: I am combining \qquad groups of \qquad $($ items $)=$ __(items) Example: Multiplying 3×15 means I am combining 3 groups of 15 students to equal 45 students.

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Students will represent and recognize division using various models.	Students will explain orally a representation using past tense verbs. Students will describe division verbally using the language of multiplication (inverse operation).	I divided \qquad (objects) into __ equal groups. Example: I divided 20 counters into 4 groups. When I am dividing \qquad by \qquad , I ask myself, "How many times would I multiply \qquad (the divisor) to equal \qquad (part or the entire dividend)?" or "How many groups of \qquad (the divisor) are in \qquad (the dividend)?"

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

	complete sentences.	

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Grade 5- Adding and Subtracting Fractions

Essential Measurable Learning Objective	Language Objective	Sentence Frame
Students will recognize and generate equivalent forms of commonly used fractions.	Students will compare commonly used fractions orally with a partner using complete sentences. Students will justify in writing whether fractions are equivalent using a complete a sentence.	I know that \qquad and \qquad are/are not equivalent because I know \qquad is equivalent to \qquad because \qquad .
Students will demonstrate fluency with efficient procedures for adding and subtracting fractions with unlike denominators.	Students will explain orally and in writing the process using sequence words from a word bank.	Word Bank first then next after second finally last
Students will use benchmarks, models, and equivalent forms to judge the size of fractions.	Students will explain verbally how to compare fractions using comparative adjectives: greater than, equal to, less than. Students will justify their reasoning in writing using complete sentences.	I determined \qquad was greater than/equal to/ less than \qquad because \qquad \qquad is \qquad (greater than, equal to, less than) \qquad because \qquad is closer to \qquad than \qquad Example: 7/8 is greater than $2 / 3$ because 7/8 is closer to 1 whole than 2/3.
Students will estimate and justify sums and differences of fractions.	Students will articulate in small groups their estimation justification using target vocabulary: estimate, estimation, reasonable, about, sum, difference.	I estimate the sum/difference of \qquad and \qquad to be about \qquad My estimate is reasonable because \qquad
Students will model problem situations and draw conclusions.	Students will read a problem situation and debate orally their conclusion using logical connectors such as: because, therefore, iffthen.	I conclude \qquad is the best representation because \qquad —.

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Grade 5- Write and Interpret Numerical Expressions

Essential Measurable Learning Outcome	Language Objective	Sentence Frame
The students will use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.	Students will list the order of operations for a dictated numerical expression and share orally with a partner, using target vocabulary: parentheses, exponents, multiplication, division, addition, and subtraction. Students will write the order of operations using appropriate suffixes: -tion, -ion.	To solve this numerical expression, I need to follow these steps using the order of operations
then__,_,_, and		

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Grade 5- Understanding the Place Value System

Essential Measurable Learning Objective	Language Objective	Sentence Frame
Students will use the place value system to round decimals to any place and describe the effects of multiplication and division on decimals.	Students will describe orally the process of rounding decimals to a given place using an if...then statement. Students will explain in writing the effect of multiplication and division on a number using the vocabulary: larger, smaller, multiply, divide.	If you round to the \qquad place, then the rounded number will be \qquad because \qquad If you \qquad a decimal, the number will be \qquad because \qquad
Students will use place value knowledge to read and write decimals to the thousandths.	Students will write decimals in word form using target vocabulary: tenths, hundredths, thousandths. Students will read decimals in word form orally, using correct target vocabulary.	This decimal is \qquad There are \qquad tenths, \qquad hundredths, and \qquad thousandths.
Students will use the place value system to recognize and generate equivalent forms of decimals to the thousandths place	Students will listen to a given decimal, write an equivalent decimal, and explain their reasoning using target vocabulary: equivalent, tenths, hundredths, thousandths.	\qquad is equivalent to \qquad because \qquad
Students will recognize equivalent representations for the same number and generate them by decomposing and composing numbers, including expanded and exponential notation.	Students will listen to a given decimal, write an equivalent decimal, and explain their reasoning using target vocabulary: equivalent, tenths, hundredths, thousandths. Student will write in word form numbers in the millions using target vocabulary: hundred, thousand, and million.	\qquad is equivalent to \qquad because \qquad The number \qquad (standard form) is written as \qquad (word form).

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

	Students will justify answers to exponential notation problems orally with a partner using complete sentences.	$\underline{X^{\mathrm{x}} \text { is equivalent to ___ because }}$
Students will describe the effects of multiplying and dividing whole numbers as well as the relationship between two operations.	Students will explain in writing the effect of multiplication or division on a number and then share orally with a partner using comparative adjectives and complete sentences.	If you_____(multiply/divide) a number, the___(biggeror/smaller) $)$ because___ will be
	Students will explain in writing the inverse relationship between multiplication and division and then share orally with a partner using complete sentences.	Multiplication and division are related because___

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Grade 5- Graphing Points on the Coordinate Plane

Essential Measurable Learning Objective	Language Objective	Sentence Frame
Students will use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates.	Students will label in writing and orally identify the parts of a coordinate system using target vocabulary: x-axis, y axis, ordered pair, intersection, origin, perpendicular lines, coordinates, horizontal, vertical.	This part is the \qquad In a coordinate system, the \qquad is \qquad
Students will describe how to plot and show the relationship between the axes and the coordinate points.	Students will describe orally the axes and coordinate point relationship using sequencing words.	First, start \qquad (at the origin). Next, move \qquad to the right/left. Finally, move \qquad up/down. This is the plot of the ordered pair.

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Grade 5- Converting Like Measurement Units within a Given Measurement System

Essential Measurable Learning Objectives	Language Objectives	Sentence Frames
Students will convert from one unit to another within a system of linear measurement	Students will discuss verbally with a partner the strategy using the vocabulary: convert, length, inches, feet, yard, centimeter, millimeter, meter, kilometer, mile. Students will explain in writing the steps to convert the two units of measurement using sequence terms: first, then, next, finally.	To convert \qquad into \qquad , I have to \qquad That means that \qquad is equivalent to/the same as \qquad \qquad . If there are \qquad in \qquad \qquad , then there are \qquad in \qquad . First \qquad Next \qquad My answer is . \qquad
The student will convert from one unit to another with a system of measurement (mass and weight).	Students will explain the strategy utilized verbally using the vocabulary: convert, mass, weight, volume, pounds, ounces, cup, pint, quart, gallon, liter, kiloliter, milliliter. Students will explain in writing the process using sequence terms: to begin, second, then, last.	To convert \qquad into \qquad , I have to \qquad That means that \qquad is equivalent to/the same as \qquad \qquad -. If there are \qquad in \qquad \qquad , then there are \qquad in \qquad \qquad To begin, \qquad . Next \qquad My answer is \qquad

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

