ST. LOUIS PUBLIC SCHOOLS

Language Companion to the DESE Math Model Curriculum, Grade 2

Essential Measurable Learning Objective	Language Objectives	Sentence Frames
Students will apply the strategy used to compute a given multiplication problem.	Students will explain the strategy orally using logical connectors (<i>and, that, so</i>).	I made groups of that equal Example: I made 6 groups of 5 counters that equal 30.
	Students will explain in writing a multiplication problem as groups of an amount, using <i>-ing</i> <i>endings</i> as a noun & verb ending.	Multiplying x = means: I am combining groups of (<i>items</i>) = (<i>items</i>) Example: Multiplying 3 x 15 means I am combining 3 groups of 15 students to equal 45 students.

Grade 5- Multiply and Divide Multi-Digit Numbers

Students will represent and recognize division using various models.	Students will explain orally a representation using past tense verbs. Students will describe division verbally using the language of multiplication (<i>inverse operation</i>).	I divided(objects) intoequal groups. Example: I divided 20 counters into 4 groups. When I am dividing by , I ask myself, "How many times would I multiply (the divisor) to equal (part or the entire dividend)?" or "How many groups of (the divisor) are in (the dividend)?"
Students will apply properties of operations.	Students will articulate the characteristics of specific multiplication and division properties using an <i>ifthen</i> statement. Students will explain verbally	The property of multiplication/division tells me that if the equation, then I know that the equation is true because The property of
	the process of composing and decomposing numbers using present tense verbs.	states that The property allows me

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant,

a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Students will demonstrate fluency with efficient procedures for division of whole numbers. Students will apply and describe the strategy used to compute a multi-digit division problem. Students will represent a mathematical situation as a number sentence.	Students will describe in writing the process using sequence words: <i>first, then,</i> <i>next, finally, after, last.</i> Students will explain orally and in writing the division strategy using complete sentences. Students will write a word problem using a given number sentence and read it to a partner without the number sentence. Students will listen to a partner's word problem and create a number sentence using that information. Students will orally justify the number sentences using "1 agree because" or "1 disagree"	to change the equation (x, \div)
Students will model problem situations using representations.	Students will explain in writing how the representation models the given problem using	My representation models this division/multiplication problem because

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant,

a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

complete sentences.	

Essential Measurable Learning Objective	Language Objective	Sentence Frame
Students will recognize and generate equivalent forms of commonly used fractions.	Students will compare commonly used fractions orally with a partner using complete sentences.	I know that and are/are not equivalent because
	Students will justify in writing whether fractions are equivalent using a complete a sentence.	I know is equivalent to because
Students will demonstrate fluency with efficient procedures for adding and subtracting fractions with unlike	Students will explain orally and in writing the process using sequence words from a word bank.	Word Bank first then next after second finally last
denominators. Students will use benchmarks, models, and equivalent forms to judge the size of fractions.	Students will explain verbally how to compare fractions using comparative adjectives: greater than, equal to, less than.	I determined was greater than/equal to/ less than because
	Students will justify their reasoning in writing using complete sentences.	is (greater than, equal to, less than) because is closer to than Example: 7/8 is greater than 2/3 because 7/8 is closer to 1 whole than 2/3.
Students will estimate and justify sums and differences of fractions.	Students will articulate in small groups their estimation justification using target vocabulary: <i>estimate</i> , <i>estimation</i> , <i>reasonable</i> , <i>about</i> , <i>sum</i> , <i>difference</i> .	I estimate the sum/difference of and to be about My estimate is reasonable because
Students will model problem situations and draw conclusions.	Students will read a problem situation and debate orally their conclusion using logical connectors such as: <i>because, therefore, if/then</i> .	I conclude is the best representation because

Grade 5- Adding and Subtracting Fractions

Essential Measurable Learning Outcome	Language Objective	Sentence Frame
The students will use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.	Students will list the order of operations for a dictated numerical expression and share orally with a partner, using target vocabulary: <i>parentheses, exponents,</i> <i>multiplication, division,</i> <i>addition, and subtraction.</i> Students will write the order of operations using appropriate suffixes: <i>-tion, -ion.</i>	To solve this numerical expression, I need to follow these steps using the order of operations, ,,, and then
The students will write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them.	Students will listen to a dictated numerical expression and write in word form using target vocabulary: <i>less than, more than, times</i>	Another way to represent <u>(numerical</u> expression) is <u>(word form)</u> . Example: Another way to represent 5+2 is two more than five.

Grade 5- Write and Interpret Numerical Expressions

Essential Measurable Learning Objective	Language Objective	Sentence Frame
Students will use the place value system to round decimals to any place and describe the effects of multiplication and division	Students will describe orally the process of rounding decimals to a given place using an <i>ifthen</i> statement.	If you round to the place, then the rounded number will be because
on decimals.	Students will explain in writing the effect of multiplication and division on a number using the vocabulary: <i>larger, smaller,</i> <i>multiply, divide</i> .	If you a decimal, the number will be because
Students will use place value knowledge to read and write decimals to the thousandths.	Students will write decimals in word form using target vocabulary: <i>tenths, hundredths,</i> <i>thousandths.</i>	This decimal is There are tenths,hundredths,
	Students will read decimals in word form orally, using correct target vocabulary.	and thousandths.
Students will use the place value system to recognize and generate equivalent forms of decimals to the thousandths place	Students will listen to a given decimal, write an equivalent decimal, and explain their reasoning using target vocabulary: <i>equivalent, tenths, hundredths,</i> <i>thousandths.</i>	is equivalent to because
Students will recognize equivalent representations for the same number and generate them by decomposing and composing numbers, including expanded and exponential notation.	Students will listen to a given decimal, write an equivalent decimal, and explain their reasoning using target vocabulary: <i>equivalent, tenths, hundredths,</i> <i>thousandths.</i>	is equivalent to because
	Student will write in word form numbers in the millions using target vocabulary: <i>hundred</i> , <i>thousand</i> , <i>and million</i> .	The number (<i>standard form</i>) is written as (<u>word form</u>).

Grade 5- Understanding the Place Value System

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant,

a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program,

funded by the US department of Education

	Students will justify answers to exponential notation problems orally with a partner using complete sentences.	$\underline{X^x}$ is equivalent to because
Students will describe the effects of multiplying and dividing whole numbers as well as the relationship between two operations.	Students will explain in writing the effect of multiplication or division on a number and then share orally with a partner using comparative adjectives and complete sentences.	If you (multiply/divide) a number, the (product/quotient) will be (bigger/smaller) because
	Students will explain in writing the inverse relationship between multiplication and division and then share orally with a partner using complete sentences.	Multiplication and division are related because

Essential Measurable Learning Objective	Language Objective	Sentence Frame
Students will use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates.	Students will label in writing and orally identify the parts of a coordinate system using target vocabulary: <i>x-axis</i> , <i>y-</i> <i>axis</i> , ordered pair, intersection, origin, perpendicular lines, coordinates, horizontal, vertical.	This part is the In a coordinate system, the is
Students will describe how to plot and show the relationship between the axes and the coordinate points.	Students will describe orally the axes and coordinate point relationship using sequencing words.	First, start(<i>at the origin</i>). Next, move to the right/left. Finally, move up/down. This is the plot of the ordered pair.

Grade 5- Graphing Points on the Coordinate Plane

Essential Measurable	Language Objectives	Sentence Frames
Learning Objectives		
Students will convert from one unit to another within a system of linear measurement	Students will discuss verbally with a partner the strategy using the vocabulary: <i>convert</i> , <i>length</i> , <i>inches</i> , <i>feet</i> , <i>yard</i> , <i>centimeter</i> , <i>millimeter</i> , <i>meter</i> , <i>kilometer</i> , <i>mile</i> .	To convert into , I have to That means that is equivalent to/the same as
		If there are in , then there are in
	Students will explain in writing the steps to convert the two units of measurement using sequence terms: <i>first</i> , <i>then, next, finally</i> .	First Next My answer is
The student will convert from one unit to another with a system of measurement (mass and weight).	Students will explain the strategy utilized verbally using the vocabulary: <i>convert,</i> <i>mass, weight, volume, pounds,</i> <i>ounces, cup, pint, quart,</i> <i>gallon, liter, kiloliter,</i> <i>milliliter.</i>	To convert into , I have to That means that is equivalent to/the same as
		If there are in , then there are in
	Students will explain in writing the process using sequence terms: <i>to begin,</i> <i>second, then, last.</i>	To begin, Next My answer is

Grade 5- Converting Like Measurement Units within a Given Measurement System

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant,

a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education